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A certain convergence notion for extended real-valued functions, which has been
studied by a number of authors in various applied contexls since the latter 1960s, is
examined here in relation to abstract optimization problems in normed linear
spaces. The main facts concerning behavior of the optimal values, the optimal
solution sets and the e-optimal solution sets corresponding to "convergent"
sequences of such problems are developed. General linear perturbations are incor
porated explicitly into the problems of the sequence, lending a stability-theoretic
character to the results. Most of the results apply to nonconvex minimization.

1. INTRODUCTION

This paper treats "convergent" sequences of implicitly constrained,
linearly perturbed optimization problems of the form

P(v): minimize J(x) - (x, v) over x EX. (1.1 )

We assume J: X -+ [-00, + 00 J and that X is a real normed linear space with
topological dual V. We write (x, v) to denote the value of v E V at x E X.
Our objective is to examine the behavior of the optimal value of P(v),

w(v) = inf{f(x) - (x, v)},
x

and for 6 E [0, +(0) the sets of 6-optimal solutions of P(v),

Q(v, 6) = {x E XIJ(x) - <x, v) ~ 6 + w(v)},

(1.2)

(1.3)

as the problem elements J and v are allowed to range over convergent
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sequences and f, tends toward zero. We regard all problem constraints as
being embodied in J, via the use of the possible function value +co.

Other work involving approximating sequences of optimization or
variational problems, carried out in a spirit roughly similar to that followed
here, can be found, for example, in Refs. [3-9, 13, 15-20, 24-27, 29-31,
34-37, 41, 44-46, 48-49]. In these sources one can find many further
references to related work in a wide variety of areas of application, including
approximation, nonlinear programming, stochastic optimization, control
theory. free boundary problems, evolution equations, variational problems
with obstacles, and others.

The various sequences involved will be indexed with the subscript a,
ranging over the values 1, 2,... co. The convergence va ---t Voo considered here
with regard to problem P(v) will usually be in the strong (i.e., norm)
topology on V, although certain refinements will involve merely weak or
weak * convergence.

A key issue is what notion to use for the convergence fa ---t f 00' It turns
out, perhaps surprisingly, that the notion most natural for the present work is
not ordinary pointwise convergence of functions. but rather a distinctly
different yet subtly related convergence notion. one arising from both
geometric and technical considerations. It can be defined in terms of
epigraphs, that is, the sets of the form

epif= j(x,.u)EXXR If(x)~.u},

as follows: fa ---t foo if and only if

IV-lim epi fa C epi foc c s-lim epi fa' (1.4 )

Here, s-lim and w-lim denote the usual limit inferior and limit superior of a
sequence of sets, except taken in the strong (i.e., norm) and weak topology,
respectively. Thus,

and

where (a) denotes the sequence 1, 2,... (excluding co) and we write simply
(fJ) c (a) to denote a subsequence (/3) of (a). In words, (1.4) says that (a)
each point of epi foo is realizable as the strong limit of a sequence drawn
from the epi fa's, and (b) epi f 00 contains each weak subsequential limit of
each sequence drawn from the epi fa's. Alternatively, (1.4) can be regarded
as saying that the set-valued mapping a ---t epi fa is (a) strongly lower
semicontinuous at a = co, and (b) weakly upper semicontinuous at a = co.
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Mosco [35) was the first to consider this specific convergence notion
(1.4), with its crucial distinction between weak and strong topologies, while
the finite-dimensional case was considered a bit earlier by Wijsman [45,46].
Salinetti and Wets [41] have given detailed study to comparing and
contrasting the present notion fa -> foo with ordinary pointwise convergence
(see also Marcellini [29); Attouch [4, Prop. 1.19), [5, Prop. 1.7]; Denkowski
[17); and Dolecki et al. [20]).

Depending on the particular space X under. consideration, variants of ( 1.4)
may be appropriate, sometimes yielding refined results. When X is the dual
of some other normed linear space Yo, for example, many of the results
below admit variants/refinements in which the role of w-lim epi fa (cf. (1.4))
is played by w*-lim epifu' involving the weak* topology induced on X by
Yo' As another example, in a discussion involving spaces paired in duality,
the strong topology in (1.4) would generally be replaced by the Mackey
topology (cf. Joly [24,25]).

The paper is organized as follows. Section 2 gives certain background
dealing with fa -> foo and with convex analysis. In Sections 3-4 the general
behavior of w(v) and il(v, c) is examined for convergent sequences of
problems P(v). For example, in Section 4, concerning the set ilaoCv oo ' 0) of
exact solutions to the limit problem Poo(v cv )' Theorem 4 provides strong
"necessary conditions" in terms of the sets ila(va,O) as a ---+ 00, while
Theorem 5 provides quite weak "sufficient conditions" applying to
nonconvex problems in terms of the sets ila(va , ca ) as a -> 00. In
Sections 5-6 the idea of sufficiency as embodied in Theorem 5 is explored in
more detail, with several variants and refinements obtained. Among them, we
point out in particular Theorem 10 of Section 6 and the remarks following it.
In Section 7 we see that significant refinements of the earlier results are
possible when X is finite dimensional. Throughout Sections 4-7, some of the
results are also derived in dual form, yielding for nonconvex functions new
technical properties of fa -> foo involving both function values and c
subgradients.

2. PRELIMINARIES

Throughout the paper, whenever a collection of functions fl' f2 '00" Ie"
appears it is assumed that fc.: X -> [-00, +00] for each a = 1,2,... ,00,
where X is some fixed real normed linear space having topological dual V.
Additional hypotheses on X and/or the fa'S will be explicitly introduced as
needed. The symbol B will always denote the unit ball centered at the origin.

Insight into the nature of the convergence defned by (1.4) is given by the
following characterization in terms of function values.
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LEMMA 1 (Mosco [35, Lemma 1.10]). (a) One has epifw c s-lim epifn
if and only iffor every X oo there exists a sequence (xn) such that

and

(b) One has w-lim epi fn c epi f w if and only if

f oo(xocJ ~ lim flJ(xlJ)

holds whenever (fJ) c (a) and x:» = w-lim xlJ'

It is not hard to show that in Lemma l(b) it is enough to take just the
single, trivial subsequence (fJ) = (a).

COROLLARY. If fn--->foo' then for every X w there exists a sequence (xn)
such that

and

We recall next several notions from convex analysis. For further
background on this one can consult, for example, Moreau [33], Bmndsted
[Ill, Rockafellar [401, Laurent [281, or Ekeland and Temam [22].

For any function f: X ---> [-00, +00 I, the set

domf= {x E Xlf(x) < +oo}

is the effective domain of f We say f is proper provided f is never -00 and
not identically +00, and that f is convex provided epi f is convex in X X R.

Following Fenchel [23], we say that the conjugate of f (not assumed here
to be convex or even proper) is the function f*: V ---> [-00, +00 1 given by

f*(v) = sup 1(x, v) - f(x)}.
x

Immediately from (2.1), (1.2) one has

w(v) = -f*(v).

(2.1 )

(2.2)

One can consider also the biconjugate of J, which is the function f ** on X
given by

f**(x)=sup l(x,v)-f*(v)}.
.'

(2.3)

It is weakly lower semicontinuous and convex. One has f* proper only if f
is proper. On the other hand, f* is never -00 when f is not identically +00,
and f* is not identically +00 provided f admits at least one weakly
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continuous affine minorant. In the latter case, f ** coincides with the largest
weakly lower semicontinuous convex minorant of f It follows that

1**=1 (2.4 )

when f is proper convex and weakly lower semicontinuous.
When X is a dual space, say the dual of 11'0' then one can take the

supremum in (2.3) just over Vo' Here, f** is never -00 provided f admits
at least one weak * continuous affine minorant, in which case f* * coincides
with the largest weak * lower semicontinuous convex minorant of f
Therefore (2.4) holds when f is proper convex and weak * lower semicon
tinuous.

For any f X --> [-00, +00 I and any t; E [0, +00), let us define the t;

subdifJerential of f to be the multifunction oJ: X --> V given by

v E oe!(x) f(x') >'f(x) - t; + (x' - x, v), Vx' EX. (2.5)

The image sets o.f(x) are weak * closed and convex, although possibly
empty. Using (1.2), (1.3), (2.1) and (2.2), one can check easily that, for any
x E X, v E V and e E [0, +00), the following five conditions are pairwise
equivalent:

x E .o(v, e),

w(v) <'1(x) - <x, v) <. e + w(v),

inf {f( y) - (y - x, v) f <'f(x) <. e + inf {f( y) - (,v - x, v) f,
y y

f*(v) - e <. <x, v) - f(x) <'f*(v),

v E oe!(x).

We shall use also the multifunction atf*: V --> X defined by

(2.6 )

(2.7)

(2.8 )

(2.9)

(2.10)

x E o:J*(v) f*(v')>'f*(v)-e+(x,v'-v),Vv'E V. (2.11)

The image sets a:f*(v) are weakly closed and convex, and possibly empty.
The inequality f>.f** and characterization (2.9) yield that in general

v E oe!(x) =:> x E otf*(v), (2.12 )

while the converse implication holds provided f(x) = f **(x).
The biconjugate f* * on X defines a problem in the same way f defines

P(v). We say the closed convex regularization of P(v) is the problem

P(v): minimize f* *(x) - <x, v) over x E X. (2.13 )
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To this problem we associate an optimal value and approximate optimal
solution sets just as in (1.2), (1.3):

w(v) = inf U**(x) - (x, v)l,
x

ii(v, e) = {x E XI I**(x) - (x, v) ~ e +w(v)l.

From (/* *)* =1* one obtains immediately that

w(v) = w(v).

Since a,I**: X -> V is given by

(2.14 )

(2.15 )

(2.16 )

v Ea,I**(x) <:> 1**(x')~/**(x)-e+(x'-x,v),Vx'EX, (2.17)

one can also check easily that the following five conditions are pairwise
equivalent:

x E ii(v, e),

w(v) ~/**(x) - (x, v) ~ e + w(v),

inf U**(y) - (y, v)f ~/**(x) ~ e + inf U**(Y) - (y - x, v)l,
y y

I*(v) - e ~ (x, v) - I**(x) ~/*(v),

v E 8J**(x).

(2.18 )

(2.19)

(2.20)

(2.21 )

(2.22)

Finally, observe that when X is the dual of some other space, say Vo c V,
then the preceding three paragraphs still apply with

V, aJ, weak*, atl*, weakly, a,I**

replaced everywhere, respectively, by

Vo, atf, weakly, aJ*, weak*, au**·

We close this section by recalling two basic theorems concerning la ->I w •

In view of (2.2) and the equivalences among (2.6}-(2.10), they go far toward
establishing the appropriateness of definition (1.4) to our present study, at
least in the convex case.

THEOREM 1. Assume X is a reflexive Banach space and that each
function 1,,/2'"'' 100 is proper convex and norm lower semicontinuous. Then
one has la ->/00 if and only iff: ->1:'·

This theorem was established by Wijsman [45, 46] in the finite
dimensional case. Independently, Walkup and Wets [43] established for
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reflexive Banach spaces a closely related result involving polar cones. Their
result, incorporating a metric viewpoint, is in a sense stronger and, as was
pointed out by R. T. Rockafellar, implies Theorem 1 (see [40,
Theorem 14.4]). Theorem 1 per se was established for reflexive Banach
spaces by Mosco [36] and Joly [24,25]. Theorem 3 in Section 3 can be
regarded as a nonconvex counterpart of Theorem 1.

For the second background theorem we adopt the notation

G(oof) = {(x, v) E X X VI x E oof(x)}.

THEOREM 2. Assume X is a Hilbert space and that each function
fl' f2 ,... , feN is proper convex and norm lower semicontinuous. Then one has
fa -tfoo if and only if

(i) w-lim G(oofo.) c G(oofoo ) c s-lim G(oofo.) and

(ii) there exist pairs (Xo.' va) E G(oofo.) for a = 1,2,...,00 such that

and

This theorem is due to Attouch [3, 5], who also gives other charac
terizations in terms of resolvants and Yosida approximants (see also Brezis
[10]). Matzeu [30] has proved a result for separable reflexive Banach spaces
which is similar to Theorem 2 but with the roles of the weak and strong
topologies intermixed; see also Boccardo and Marcellini [9]. The "only if'
half of Theorem 2 is extended in a number of ways by Theorems 4 and 5 of
Section 4.

3. BEHAVIOR OF w(v) FOR CONVERGENT SEQUENCES OF PROBLEMS P(v)

To each fa in a collection of functions fl' f2 '00" foo we associate an
optimization problem of the type (1.1), denoted by Pa(')' together with
optimal value wo.(-) an approximate solution sets !20.(-, .) given by (1.2) and
(1.3), respectively.

The following result has essentially been observed already by Salinetti and
Wets [41, p. 223].

PROPOSITION 1. Assume X is a reflexive Banach space and that fa -t f oc,'

where each function 11 f2 ,..., f 00 is proper convex and norm lower semicon
tinuous. Then for every v oc, there exists (va) such that

Voo = s-lim va'

Proof By Theorem 1, f: -tf~. For any v we can thus apply the
Corollary to Lemma 1 and appeal to (2.2).
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We turn now to the nonconvex case. The following result will playa key
role in several subsequent results.

LEMMA 2. Assume that epi foc c s-lim epi fa' Then one has

woo(v oc,) ~ lim w/l(v/l) (3.1 )

whenever (fJ) c (a) and Voc = w-lim v/l in V. If X is a Banach space, then
(3.1) holds whenever V oo = w*-lim v/l in V. If X is the dual of some other
normed linear space Vo, then (3.1) holds whenever Voo = w-lim v/l in Vo'

Proof Let (fJ) c (a) and (v/l)' Voo be given satisfying any of the alternate
hypotheses. By (1.2), inequality (3.1) is equivalent to the condition

foo(x) - (x, voo ) ~ lim inflfiY) - (y, v/l)}'
y

VxEX.

Under any of the alternate hypotheses one has (x, voo ) = lim(x, v/l) for each
x E X and also

:Jr < +00 such that II v/lil ~ r, vfJ E (fJ) (3.2)

(e.g., [47, pp. 120 and 125 J). In particular, for (3.1) it suffices to prove that

VxEX.

Let x E X. By Lemma I(a), there exists (xa ) such that

x = s-lim x a '

From

and also (using (3.2»

(x - x/l' v/l) <Ilx - x/lil . II v/lil <r II x /l - xii,

we obtain

for any fJ E (fJ). Therefore

0+100(x) ~ lim r IIx/l - xii + lim//l(x/l) ~ lim inflf/l(.v) - (v - x, v/l) f,
y

as desired.
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In the next result we employ a modification of the notation (1.2):
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VrE[O,oo), wr(v) = inf U(x) - (x, v)f·
IIxll<;;r

(3.3 )

LEMMA 3. Assume X is a reflexive Banach space and that w-lim epi fa C

epi foo' where foo is not identically +00. Then

(3.4 )

holds whenever r E (r, +00) and v00 = s-lim va' where

r= inf1p 13x E domfoc' Ilxll =pl·

Proof Note that domfoo*0 yields r< +00. Now suppose (3.4) failed
for some r E (r, +00) and some v00 = s-lim vQ. Then w~ (v 00) E R and there
exist (fJ) c (a) and e >°satisfying

Hence, there exists (x13) such that

VfJ E (jJ).

and vfJ E (jJ).

By reflexivity, there exist (y) c (jJ) and X oo such that X oc = w-lim xI" Pick y so
that

I(xy , vy ) - (x oc ' voc)1 ~ e,

Then for each y;? y we have

fy(x y) ~ (xy, vy) + w~(voo) - 2e

~ (xo::' voo ) + w~(v,J - e

< (x oc ' vex) + w~(vx)

Therefore limfy(xy) <foo(xrrJ, where Xcv = w-lim Xy. By Lemma l(b), this
contradicts our hypothesis. Thus, (3.4) holds whenever r E (r, +00) and
v0::. = s-lim va·

THEOREM 3. Assume that X is a reflexive Banach space and that
fa --+ foo' where foo is not identically +00. Suppose there exist r < +00 and ii
such that f,)x) = +00 for allllxli > r and a = ii, ..., 00. Then wQ ---+ woo' and
moreover,

(3.5 )
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holds whenever Voo = s-lim Va' More generally, (3.5) holds if Voo = s-lim Va
and there exist r < +00 and ii such that wa(va) = w~(va)for all a = ii, ... , 00.

Proof Combine Lemmas 1, 2 and 3.

4. BEHAVIOR OF il(v, e) FOR CONVERGENT SEQUENCES OF PROBLEMS P(v)

We begin by establishing for the convex case a strong "necessary
condition" which must be satisfied by the exact solutions of the limit
problem Poo(v oo ) in relation to the solutions of the approximating problems
Pa(va)·

THEOREM 4. Assume X is a reflexive Banach space and that fa --+ foc'
where each function fl , f2 ,..., f 00 is proper convex and norm lower semicon
tinuous. Then for every Voo and every Xoo E iloo(v oo ' 0), there exist (va) and
(xa) satisfying

V oo = s-lim Va' Woo(v oo ) = lim wa(va),

XeD = s-lim Xa' Xa E ila(va, 0).

Proof By (2.2) and the equivalence (2.6) <::> (2.10) for e = 0, it suffices
to establish the following: If (XeD' vex,) E G(8of (0)' then there exists a
sequence of pairs (xa , va) E G(oofa) such that

(xXl , v<X,) = s-lim(xa, va)'

f:O(v eD ) = limf:(va)·

(4.1 )

(4.2)

We argue by contradiction. Suppose (4.1) fails, i.e., that (xeD' voo ) E G(oofoc)
and there exists an e >0 for which

(4.3)

occurs for infinitely many a's, say on a subsequence (jJ) c (a). Here,
B={(x,v)EXXVlllxI12+llvI12~1}. By Theorem 1 we can apply
Lemma l(a) in Vas well as in X to obtain sequences (xa) and (va) satisfying

X oo = s-lim x a'

Voo = s-lim va'

limfa(xa) ~foo(xrxJ,

limf:(va) ~f:O(V(1,)'

(4.4 )

(4.5)

We now claim there exists iJ such that

vp ~iJ, (4.6)
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where A= (e 2 )/2. Using (4.4) and (4.5), pick if so that

(X/l' v/l) E (x ec ' v,xJ + eB,

Now let fJ >if be given, and suppose that

ffj(x/l) +f;(v/l) - (x/l' vfj) ~..t
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(4.7)

(4.8)

This means that v/l E o,~f/l(xfj)' Hence, the lemma of Br0ndsted and
Rockafellar [12] implies that there exists a pair (x, v) E G(oo ffj) satisfying

Ilx - xfjll ~ 0, II v - vfjll ~ 0·
These imply (x, v) E (X/l' Vfj) + eB, which combines with (4.7) to yield
(x. v) E (xoo ' voo ) + 2eB. Since also (x, v) E G(oof/l)' this contradicts (4.3).
We conclude that (4.8) fails for each p>jj, i.e., that (4.6) holds. Now
combining (4.6) with (4.4) and (4.5), we obtain

foo(xaJ +f~(voo) >limfa(xa) + limf:(va)

>Iim(fa(xa) +f;(v a»
>lim(fjl(xjl) +f;(vfj»

>A+ lim(xfj' Vfj)

= A+ (x <.Xl' V 'x,),

But this conflicts with foo(x ec ) +f~(voo) ~ (x oo , voo ), which follows from the
assumption (x oo , voo ) E G(oofoo)' This contradiction proves there exists a
sequence of pairs (xa' va) E G(oo fa) such that (4.1) holds. We now show
that (4.2) also holds for any such sequence of pairs. By Theorem 1. we can
apply Lemma 1(b) in V to obtain

and Lemma lea) in V to obtain a sequence (v~) satisfying

(4.9)

V oo = s-lim v~, (4.10)

Taking the limit superior throughout this inequality yields, in view of
lim(xa, v~ - va) = (xoo ' Voo - vec ) = 0, the inequality

limf;(v~)>lim«xa, v~ - va) +f;(v a»= limfl'(v a ). (4.11)

Combining (4.11), (4.10), (4.9) yields (4.2), completing the proof.
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Happily. it turns out that an extremely weak "sufficient condition" applies
quite broadly to the exact solutions of PryjvcxJ in relation to the approximate
solutions of the approximating problems Pa(va). Any real normed linear
space will do. and the fa's need not be convex or even lower semicontinuous.

THEOREM 5. Assume fa ...... fa:.;' Let (fJ) c (a) and corresponding
sequences (x/l)' (v/l)' (e/l) satisfy the conditions

(Xa:.;. va:):? lim(x/l. v/l)'

x/l E fl/l(v/l' ell)' 0 ~ e/l ...... O.

Then xcx:, E .Qe1Jv oo • 0), and furthermore

lim(f/l(x/l) - (x/l' v/l» = lim w/l(v/l) = woo(va:).

lim inf{f/l(x) - (x - xa• v/l)} = limfa(x/l) =f~(xa::J.
x

(4.12 )

(4.13 )

(4.14 )

(4.15 )

where the limits are finite if foo is proper. If X is a Banach space. then in
(4.12) the weak topology on V can be replaced by the weak* topology. IfX is
the dual of some other normed linear space Vo• then in (4.12) and the
hypothesis fa ...... f 00 (see (1.4» the weak topology on X can be replaced by the
weak* topology induced by Vo' provided IV/l1 fJ = I •...• oo} c Vo' In any
case. the technical condition (4.13) is fulfilled automatically whenever either
of the limits in (4.12) actually occurs in the norm topology.

Proof We have that

lim w/l(v/l) ~ lim(f/l(x/l) - (x/l' L'/l»

~ lim(e/l + w/l(v/l»

= lim w/l(v/l)

~ woo(v oo )

~.FcJ::(xe1J - (xcx:. va:)

~ limf/l(x/l) + lim(-(x/l' v/l»

~ lim(f/l(x/l) - (x/l' v/l»

~ Iim(e/l +w/l(V/l»

= lim w/l(v/l)'

(4.16 )

(4.17)
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so equality holds throughout and the common value is the quantity

woo(v oc) =foc,(xoc,) - (Xoc, , voo )'

323

(4.18 )

(4.20)

Here, (4.16) follows from Lemma 2, and (4.17) follows from Lemma l(b)
and (4.13). This establishes (4.14). We also have that

lim(wll(vll ) + (x ll ' Vll» ~ limfll(xll)

~ lim(xll , vlJ) + lim(flJ(xlJ) - (x lJ , ['IJ»

~ (xoc ' voc) + (foo(xoo )- (xoc" voo » (4.19)

=foc,(xaJ

~ limfixlJ)

~ lim(ell + wll(vll ) + (xll ' vlJ»

= lim(wlJ(vll ) + (xlJ ' vlJ»'

so equality holds throughout. Here, (4.19) follows from (4.13) and (4.14)
(actually, just the first part of the string of inequalities leading to (4.14»,
while (4.20) follows from Lemma I(b). This establishes (4.15). Finally,
(4.18) shows xcoE.ooo(voo'O) and that the common values in (4.14), (4.15)
are finite if fa:; is proper. The refinements involving alternate topologies
follow from the preceding proof, by appealing to the refinements in Lemma 2
and to the obvious weak * variant of Lemma I (b). The remark concerning
(4.13) is elementary (e.g., [47, pp. 120 and 125]). This concludes the proof.

For the convex case in Hilbert spaces, the technical condition (4.13) can
be avoided en route to obtaining x oc E .0co (v oc , 0). The special case of this
result in which the tolerances elJ are identically zero (and Va: = 0) has been
observed already by Wets [44, p. 4001.

PROPOSITION 2. Assume X is a Hilbert space and that fa --4fx' where
each function f1' f2 ,..., f oc is proper convex and norm lower semicontinuous.
Let (fJ) c (a) and corresponding sequences (xlJ)\ (v lJ ), (elJ) satisfy the con
ditions

Then Xoo E .oc<;(voo ' 0).

Proof First, suppose each elJ = O. Then (x lJ , vlJ) E G(oofpJ for each
fJ E (fJ). Since (xoo ' v00) = w-lim(xlJ , vlJ)' the left-hand inclusion in the "only
if' half of Theorem 2 yields (x<xo' vac ) E G(oofcrJ, i.e., XC£! E .0 00 (v '£ , 0). For
the general case 0 ~ elJ --4 0, we appeal to the Br0nsted-Rockafellar lemma
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[I21 for each fJ E (fJ). From va E o.Ja(xa) this yields pairs (xa, va) E G(oofa)
satisfying

Since (xoo ' voo ) = w-lim(xa, va) and 0 = lim ea, it is routine to deduce
(XeD' voo ) = w-lim(xa, va)' The "only if' half of Theorem 2 can now be
applied just as before, but to the pairs (xa, va) in place of (xa, va)'

Observe that Theorem 4 can be paraphrased as asserting (for the convex
case in reflexive Banach spaces) that

(4.21 )

plus associated limit information about optimal values. Correspondingly,
Theorem 5 can be paraphrased as asserting (for the nonconvex case in
general normed linear spaces), in particular, that

plus associated limit information about optimal values.
The next two sections explore further the type of sufficiency criterion for

optimality exemplified by (4.22) and Theorem 5, including the issue of
guaranteeing

(4.23)

5. FURTHER SUFFICIENCY CRITERIA

We begin with a sharpened form of Theorem 5 ensuring the existence of
appropriate cluster points (cf. (4.23».

THEOREM 6. Assume that X is a reflexive Banach space and that

fa->foo' Let (xa>, (va)' v oo ' (e a) satisfy

and assume there exist r < +00 and ii such that Ilxall ~ r for all a? ii. Then

and there exist (fJ) c (a) and X oo such that

w-lim x a = X oo E Doo(v oo ' 0), (5.2)

lim inf{fa(x) - (x -Xa, va)} = limfa(xll) =foo(x",,). (5.3)
x
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If (X 00 , VOO ) = lim(xa, va)' then in (5.3) the {3's can be replaced by a's. If foc
is proper, the limits in (5.1), (5.3) are finite.

Proof By reflexivity, the assumed bound on II X a II implies the existence
of (fJ) c (a) and X oc such that X oo = w-lim xf}' Since condition (4.13) is
fulfilled for (fJ), Theorem 5 immediately yields (5.2), (5.3) and (4.14), as well
as the finiteness assertion once we have strengthened (4.14) to (5.1). Toward
this end, suppose that lim wa(va) <woo(v oo ). Then there exist ~ <woc(v x )

and (y) c (a) such that wy(v y)<~ for all y E (y). Since clearly fy--+ foo (e.g.,
[35, p. 5211) and the xy's are norm bounded, part of the present theorem
already established (specifically, the second equation of (4.14)) applies to
yield a further subsequence (<<5) c (y) such that woo(v oc) <lim Wh(V h). This
results in the absurdity woo(v oo ) <~ < woc(v oc)' and thus shows that
woo(va:,) <lim wa(va). The same argument can be made, with all inequalities
reversed and limits superior and inferior interchanged, to yield that
woo(v",J ~ lim wa(va). It follows that

lim(fa(xa) - (Xa, va») <lim ea + lim wa(va)

<woo(v cc )

<lim wa(va)

which establishes (5.1). Finally, suppose (Xoc ' va) = lim(xa, va)' Using this.
together with (5.1) and (5.2), we obtain

lim(wa(va) + (Xa' Vn») ~ lim(fn(xn) - en)

= limfn(xn)

~ lim(fa(xn) - (Xn, va») + lim(xa, va)

as well as the analogous estimates with inequalities reversed and limits
superior (and the ea's suppressed). This establishes the refinement of (5.3)
and completes the proof.

The next result is dual to Theorem 6. (Recall the equivalences among
(2.6}-(2.1O). )

THEOREM 7. Assume that X is a reflexive Banach space and that
fa --+foo' Let (xa), X oo ' (va)' (ea) satisfy
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and assume there exist r < +00 and ii such that II vall :( r for all a ~ ii. Then

foo(x oo ) = limfa(xa) = lim infUa(x) - (x - Xa' va)}' (5.4)
x

and there exist (P) c (a) and Voo such that

w-lim VIl = Voo E 0ofoo(xoo )'

f~(voo) = lim ft(v ll ) = lim«xll , vll ) - fll(x».

(5.5)

(5.6)

If (xoo ' voo ) = lim(xa , va)' then in (5.6) the (J's can be replaced by a's. Iffoo
is proper, the limits in (5.4), (5.6) are finite.

Proof The first part of the argument is a straightforward reworking of
the proof of Theorem 6, up to the point at which Theorem 5 yields (5.4),
(5.6) and (4.15). From there, the details concerning replacing p's by a's can
be a little tricky. One first obtains foo(x oo ):( limfa(xa) and loo(xoo ) ~

lim fa(xa), in each case using a reductio ad absurdum argument based on
applying the second equality of (4.15) to a subsequence fy~fx' Using these
inequalities, one obtains

f oo(xYJ) :( lim la(xa)

~ lim(ea + infUa(x) - (x - Xa' va)})
x

= lim infUa(x) - (x - Xa' va)}
x

:( limfa(xa)

~foc(x(J:J,

establishing (5.4). Finally, from (xYJ' voo ) = lim(xa, va)' together with (5.4)
and (5.5), one obtains

lim«xa , va) - fa (xa)) ~ limU:(va) - ea)

=limf:(va)

~ lim(xa, va) + limU:(va) - (Xa' va»

~ (Xoo ' Voc ) - fOC(xCfJ

=f~(vrxJ,

as well as the analogous estimates with inequalities reversed and limits
superior (and the 6 a'S suppressed). This establishes the refinement of (5.6).

The next result provides a convenient criterion for exploiting Theorem 6.
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THEOREM 8. Assume that X is a reflexive Banach space and that
fa -+foo ' where foo is not identically +00. Let v(jj be such that there exists a
proper convex norm lower semicontinuous function k on X having the
following two properties: (i) k <fa for all a sufficiently large (excluding
a=co); (ii) there exists y>inf{k-("voo)f such that IxEXlk(x)
(x, voo ) <y} is weakly compact. Then there exists 11 > 0 such that for any
vw ' (va)' (xJ, (ea) satisfYing

one has

X a E Qa(Va' ea),

Voo = s-lim Va'

0< ea -+ 0, (5.7)

lim(fa(xa) - (xa' va») = lim wa(va) = wx(v'X)) E R (5.8)

and also the existence of (fJ) c (a) and X oo such that

w-lim x{3 = x oc, E Q(jj(v oc ' 0),

lim inf{f{3(x) - (x - x{3' v(3)} = limf{3(x{3) =foo(xoo ) E R.
x

(5.9)

(5.10)

If (xoo ' voo ) = lim(xa, va)' then in (5.10) the fJ's can be replaced by a's. In
particular, one has

o *- w-lim Qa(va, ea) c Qco(v w ' 0),

lim w,,(va ) = woo(voc;) E R

whenever VO') = s-lim Va' II t'co - v",J <11. 0 < ea -+ O.

(5.11)

(5.12)

Proof By the Moreau-Rockafellar theorem [32, 33, 38], property (ii)
implies k* is bounded above on v(jj + IlB for some 11 > O. Now consider any
e > 0 and Voo = s-lim Va' where II VCO - v(J)11 </1. We have k* bounded above
on a norm neighborhood of voo ' so k* is norm upper semicontinuous at t'oc.'

Moreover, results of Moreau [32, 33] (see also Asplund and Rockafellar [2,
Theorem 2]) imply that for any AE [0, +(0) there exists fi > 0 such that the
set

T= U {a.~k*(v) Iv E Voo + fiB}

is Mackey equicontinuous, hence norm bounded by some r < +00. Now take
A to be
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Notice that ..I.E (0, +(0). (Indeed,

follows from

key) ~ lim k( Ya) ~ lim fa(Ya) ~f( y), VyEX,

which itself follows by property (i) and Lemma l(a).) Using upper semicon
tinuity, choose iiE (0, PI so that k*(v) ~ £ + k*(v ce,} for all v E Vac +iiB.
Then pick a so that va E Voo + iiB and k ~fa for all a:> a, and finally. using
Lemma 2, pick ii:> ii so that wa(va) ~ £ + woo(vcxJ for all a:> a. Then for
any a:> ii and any x E a:f:(va)::> ila(va , E), the estimates

k(x) - (x, va) ~f:*(x) - (x, va)

~ C + Wa(V a )

~ C + C + Woo(V oc )

= A - c - k*(v ac )

~A-c+e-k*(va)

(by (i»

(by x E oU:(va ))

(by ii)

(by A)

(by ii, a)

imply that xEo>tk*(va)cT (by p,a). Thus, whenever vce=s-limva ,
II V OC - VOO II <p" e >0 there exist A> 0, r < +00, ii satisfying

o:f:(va) C o-tk*(va) c jx E Xlllxli ~ r}, Va:> a. (5.13)

Suppose now that (xa ), (c a ) satisfy (5.7). By (5.13), there exists,. < +00
such that II x a II ~ r for all a sufficiently large, so that Theorem 6 applies.
From (5.1), (5.2) and (5.3) follow (5.8), (5.9) and (5.10), respectively. as
well as the refinement of (5.10). The second part of (5.11) follows from
Theorem 5. The existence part of (5.11), as well as (5.12), will follow from
(5.9) and (5.8), respectively, provided a sequence (xa ) satisfying (5.7) can be
chosen. This is indeed possible when 0 < ca -+ 0, due to the fact that. for all
a sufficiently large, -00 < -k*(va ) ~ wa(va ) (from property (i) and
properties of k) and wa(va ) < +00 (by Lemma 2 and woo(v oo ) < +(0). This
concludes the proof.

From Theorem 8 we can deduce information concerning the behavior of
the directional derivatives of wa (·) as a -+ 00. The result actually handles
approximate directional derivatives as well. Since w(.) is concave (cf. (2.2)).
we define these whenever w(v) is finite by means of

W~(V; z) = sup \ w(v + rz) - w(v) - c I,
T>O I r \

Vv, z E V, (5.14)
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for any s E [0, +(0). When s = 0, this is just

I • w(v + rz) - w(v)
wo(v; z) = hm ,

do r

329

(5.15)

(5.16)

which is of traditional interest due to the "marginal rate of change" data it
conveys. We emphasize the natural importance of the quantities (5.14) for
strictly positive values of s also. This is due to the fact (cf. Rockafellar [39,
p. 504], [40, p. 220]; and Moreau [33, p. 67]) that

sup 1\ w(v + rz) - w(v) - e 1\, = inf{(x, z) I x E ii(v, e)f
T >0 . r

whenever s E [0, +(0) and z E V (recall (2.13)-(2.15)).

COROLLARY. Under the hypotheses of Theorem 8, the approximate direc
tional derivativefunctions (w,,)~ (v; z) defined as in (5.14) satisfr

(5.17)

whenever V'X) = s-lim v"' II va: - vwll < 11, °~ sa -> 0, Zx = s-lim Za'

Proof Let voo ' (v,,), zoc' (z,,), (e,,) be given as described. Since W x is
concave and finite at voc ' the difference quotient r- 1 [woc(v oc + rz oc )
woo(voc)1 is nondecreasing as r 1°(e.g., [33, p. 641 or [40, p. 214]). Hence,
given any a < (w oc)~ (v 00 ; zoc), there exists a r >°such that

a < r- 1[woc(v co + rzoc) - wx(v x)]'

Since VOX) = s-lim v" and Zoc = s-lim z", assertion (5.12) of Theorem 8 implies

Since 0= lim e"" it follows that for all sufficiently large a one has

By the arbitrariness of a, this completes the proof.
The next result is dual to Theorem 8.

THEOREM 9. Assume that X is a reflexive Banach space and that
fa -> f 00' where f 00 is proper. Let .Yoc; be such that there exist M < +00, 11 > 0,
afor which

(5.18)
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Then for any (X",), XC()' (v",), (e",) satisfying

one has

IIxoo - .fool! < f.J,

Va E o'af",(v",),

X co = s-lim Xa '

o~ e", -+ 0, (5.19)

lim inf{f",(x) - (x - x"', v",)l = lim f",(x",) =foo(xoo ) E R, (5.20)
x

and also the existence of (fJ) c (a) and Voo such that

w-lim Vil = Voo E oofoo(xoo )' (5.21)

lim«xa, va) - fll(xil» = limf~(va) =~(voo) E R. (5.22)

If (xoo ' voo ) = lim(x'" , v",), then in (5.22) the {f's can be replaced by a's. In
particular, if for all a sufficiently large the functions f", are proper convex,
one has

o *' w-lim o'af",(x",) c oofoo(xocJ,

lim f",(x",} =foo(x oo ) E R

(5.23 )

(5.24)

whenever X oo = s-lim x"" II X OO - .fce II </1. 0 ~ e", --+ O.

Proof In outline this proof is similar to that of Theorem 8, although we
shall get by without using the Moreau and Rockafellar results. Comparing
the situation with that of Theorem 8, we find here the roles of X and V
interchanged, with the role of k* being played here by the function h defined
on X by

hex) = 1
M

i + co

if x E .foo + f.JR,
otherwise.

Let e >0 and X oo = s-lim x"', where IIxoo - .fooll < f.J. By direct argument
using the form of h, one can obtain the fact that. for any
ji E (0, /1 - II X oo - .foo II), the set

T=U {o.,\h(x)lxExoo+pB}

is norm bounded in V for all AE [0, +co). Indeed, v E aA h(x) occurs if and
only if x E .foo + f.JB and pI/v 1/ - (x - .foo ' v) ~ A, which in turn implies
(P -II x - .fro II) II v II ~ A.. Since every x E Xro + pB satisfies Ilx - Xoo II ~P+
If X co - .foo 1/ <p, this last condition yields that
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whenever v E aAh(x) and x E X oo + jiB. It follows that T is norm bounded,
say by r < +00. Now apply the preceding to the choice

(One has -00 <foo(xoo )::;;; lim f",(x",)::;;; h(xoo ) < +00, by using the
properness of foo' Lemma l(b), and f",::;;; h for all large a.) Note that
h(x) = h(xoo ) on X oo + jiB. Pick ii so that x", E X oo + jiB for all a ~ ii, and
then, using Lemma 1(b), pick a. ~ ii so that f oo(xoo ) - e ::;;;f",(x",) for all
a ~ a.. Then for any a ~ a. and any v E aJ",(x",), the estimates

h*(v) - (x"" v) ::;;;f:(v) - (x"" v)

::;;; e - f",(x",)

::;;; e + e - foo(x oo )

=,1. - h(xoo )

=,1.-h(x",)

(bYf",::;;; h)

(by v E o./",(x",»

(by a.)
(by A)

(by ii)

imply that v E aA h(x",) c T (by ji, ii). Thus, whenever X oo = s-lim x""
II x 00 - XOO II </.l, e > 0 there exist A> 0, r <+00, a. satisfying

8J",(x",) C 8.\h(x",) C {v E VIII vii::;;; r}, Va ~o.. (5.25)

Suppose now that (v",), (e",) satisfy (5.19). By (5.25), there exists r <+00
such that II v'" II ::;;; r for all a sufficiently large, so that Theorem 7 applies.
From (5.4), (5.5) and (5.6) follow (5.20), (5.21) and (5.22), respectively, as
well as the refinement of (5.22). The inclusion in (5.23) is always valid, by
Theorem 5. For the existence part of (5.23), as well as (5.24), the idea is to
invoke (5.21) and (5.20), for which we must be assured that a sequence (va)
exists satisfying (5.19). A convenient condition guaranteeing this is for the
f",'s to be proper convex for all a sufficiently large. For then, as is well
known, f",::;;; h will imply 0,* oof",(x",) C a. f",(x",) for all a sufficiently
large. This completes the proof. "

Let us now define approximate directional derivatives of the functions
appearing in Theorem 9. Motivated by the convex case, we define these
whenever f(x) is finite by means of

f '( . ) = . f 1f(x + rz) - f(x) + e !• X,Z In ,
T >0 r

VX,zEX, (5.26)

for any e E [0, +(0). We then have, at least when f is convex,

f '( ) I' f(x + rz) - f(x)o x; z = 1m "::"""":'_--'--''---'---'-
do r

(5.27)
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. !f(x+rZ)-f(x)+e!
mf = supl(z, v) Iv E 8J(x)}
r>O r

(5.28)

for e E [0, +(0) and z E X (cf. (5.14}-(5.16)).

COROLLARY. Under the hypotheses of Theorem 9, and assuming that f ex,

is proper convex, the approximate directional derivative functions (fa)~ (x; z)
defined as in (5.26) satisfy

(5.29)

n(y)

whenever X oo = s-lim Xa' Ilxoo - XOO II < /1, °~ ea -+ 0, Zoo = s-lim Za'

Proof Like that for the Corollary to Theorem 8.

6. A SUFFICIENCY CONDITION ENSURING STRONG CONVERGENCE

Our goal in this section is to establish a sufficiency result for n<:JJvoc ' 0)
containing some very strong conclusions (Theorem 10) and also a dual form
of it (Theorem 11).

We use the following definition for any fixed vectors X oo E X, VOO E V such
that woo(v oo ) is finite. For any y> 0, consider the following property:

there exist A > 0, /1 > 0. and as~ch that l
A/1 - 1 ~ Y and the functiOn k satisfies
k ~fa for all a >a(excluding a = (0),

where k is defined by

(6.1 )

If n(y) is satisfied for every y > 0, we say that property n holds (at X oo with
respect to voo )' As will become apparent, property n serves as a uniform
local version (at XOCJ with respect to voo ) of the property

w-lim epi fa C epi f 00 (6.2)

(cf. (1.4)). As we shall elaborate presently, evidence is available to support
the view that property n is satisfied generically in the reflexive Banach space
setting.

THEOREM 10. Assume that epifoo c s-lim epifa and that foc is proper.
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Let x~ and Vex be such that w(t)(vaJ isjinite and property 7t holds. Thenfor
every}' >0 and vCf) = s-lim Va there exist Ii >0 and ti such that

't/a= ti, ..., 00. (6.3 )

Itfollows that .Qoc(va:" 0) c lxw } and,for ever}' (/3) c (a) and corresponding
sequences (xll ), (v ll ), (SIl)' that the conditions

imply

Va: = s-lim vil (6.4 )

(6.5 )

If .Qoo(voo ' 0) = {xoo f and the nontriviality condition dom fee. rt jxa::l is met,
then conditions (6.4) imply also that

lim(fll(xll ) - (xll , Vll» = lim wll(V Il ) = woo(va:), (6.6)

lim inf{fix) - (x - xfj' vlI)f = limfll(xlI) =fr£(x yc ), (6.7)
x

If foo is norm lower semicontinuous at X iN ' then noo(v cc,' 0) = lxoc.f and fx is
norm rotund at x 00 with respect to v00 •

How stringent is the norm rotundity condition forced upon a proper, norm
lower semicontinuous f 00 by the hypotheses of Theorem 1O? In other words,
how "likely" is it that this necessary condition will be satisfiable by some x x

for a given parameter voo? Let us recall that Asplund [I, Theorem 3] (cf.
also Ekeland and Lebourg [21, pp. 208-209]) has shown the following: If 0)
X is a reflexive Banach space whose dual admits an equivalent Frechet
differentiable norm, (il) foo is proper and norm lower semicontinuous on X,
and (iii) wco(v) > -00 for all v belonging to some norm neighborhood N of
v<n' then there exists a norm dense G05 subset G c N such that (among a
number of his conclusions) one has for each v E G that Ix is norm rotund at
some unique x(v) with respect to v. More recently, Troyanski [42] has
proved a result implying that the dual of every reflexive Banach space admits
an equivalent Frechet-differentiable norm. We therefore have the following:
If X is a reflexive Banach space and fCfj is proper and norm lower semicon
tinuous, then the previously mentioned necessary condition on f 00 is satisfied
generically by Voo E int(domf~). (Note: 0 ~ int(dom f~) if there exist v
and y>inf{f~*-(-,v)f such that {xEXlf~*(x)-(x,v)~y} is weakly
compact.)

After proving Theorem 10 we shall present a dual version of it. In view of
the norm rotundity feature just discussed, it is perhaps not surprising (cr.
[2, 14 J) that the dual result entails Frechet-difTerentiability at a certain point.
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For greater initial readability we stated Theorem 10 formally in terms of
the sets il(v, e). In fact, though, a sharper form will actually be proved, one
in which il(v, e) is replaced everywhere by the larger set ii(v, e) = oU*(v).
(Recall the equivalences (2.6) ¢;> (2.10), (2.18) ¢;> (2.22) and also (2.12),
(2.16).)

THEOREM 10'. Assume that epi f 00 c s-lim epi fa and that the function
foo is proper. Let X oo and V oo be such that woo(v oo ) is finite and propert)' n
holds. Then for every y> 0 and V oo = s-lim va there exist e > 0 and asuch
that

Va = a,..., 00. (6.3 ')

Itfollows that iioo(v oo ' 0) c {xool and,for every (fJ) c (a) and corresponding
sequences (x/l)' (v/l)' (e/l)' that the conditions

(6.4' )

imply

(6.5' )

If iloo(v oo ' 0) = {xool and the nontriviality condition domfoo rt {xool is met,
then conditions (6.4') imply also that

limU:*(x/l) - (x/l' v/l» = lim wiv/l) = woo(v oo ), (6.6')

lim infut*(x) - (x - x/l' v/l)l = lim ft *(x/l) =f~*(xce.). (6.7')
x

If f 00 is norm lower semicontinuous at x 00' then il 00 (v 00 , 0) = ii00 (v oc , 0) =

{xool and foo is norm rotund at X oo with respect to voo '

Our proof of Theorems 10 and 10' invokes the following result. Notice
that assertion (6.10) applies a fortiori to the situation of Theorem 10.

PROPOSITION 3. Assume that epi f 00 c s-lim epi fa and that the function
foo is proper. Let x oo ' voo ').' p and 5 be such that woo(v oo ) is finite and the
triple ()., P, 5) satisfies n(y) for y = ).p- 1. Then for every "E (0, 1) and
v00 = s-lim va there exists asuch that

Va = a,..., 00, (6.8)

where p(,,) = (1 + 3,,»),(1- ,,)-1 p-l decreases to ).p-l as" 1O. Thus,

(6.9)
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04= .o",(v", 0), Va = a,..., 00, (6.10)

whenever X is the dual of another normed linear space Vo, the f,,'s are
weak* lower semicontinuous, and the w,,(v,,)'s are not -00, with
{v" I a = 1,...,00} c Voc V.

Proof Let Yf E (0, 1) and vro = s-lim v". Using Lemma 2, we can obtain
a> a such that a> a implies w",(v",) ~ I]A + woo(v,x,} as well as
v", E Voc + Yff.JB and Ilxooll·llv" - vroll ~ Yf).. Some computation shows that

k*(v) = \A - Woo (v a,,} + (xC))' v - V(J)

1+00

Now consider any a >a. Then

if v E voc +pB,
otherwise.

-W"(v,,,) >-wro(v oo ) - Yf).

= (k*(v
Q

) -). - (xoc , V
Q

- voc,» - YfA

> k*(vQ) - (1 + 2Yf))..

Suppose x E iiQ(v", , 17).) = a:Af:(v",). Then for each v E Vw + f.JB it follows
that

k*(v) >f:(v)

>f:(v",) -17). + (x, v - v",)

= -wQ(vQ) - Yf). + (x, v - v,,)

> k*(v",) - (l + 31])). + (x, v - VQ)'

which yields x E atk*(vQ) with' = (1 + 3Yf)).. But the latter condition holds
if and only if

Vv E voc. + f.JB.

Since x", + (l-I])f.JB c (xoc, + Yff.JB) + (1 - Yf)f.JB, we can conclude that

Vv E v", + (1 - Yf)f.JB,

and hence

Notice that the limit index a = 00 is also covered by the preceding argument.



336 L. MCLINDEN

Indeed, the only missing ingredient is the fact that k* >-f~. But this follows
from

(6.11 )

which itself follows from

using Lemma 1(a), the hypothesis that k ~fa for all a sufficiently large, and
the lower semicontinuity of k. We have thus shown (6.8). Since na:;(u oo ' 0) c

iico(u oo ' /'fA) for every /'f E (0,1), with p(/'f) clearly decreasing to Af1- 1 as
IJ 10, it follows from (6.8) that (6.9) also holds. Finally, suppose X is the
dual of some normed Vo' For each (; > 0 and a = 1,...,00 the set Qa(va , (;) is
weak * closed, if Ua E Vo and fa is weak * lower semicontinuous, and also
nonempty if wa(va) > -00. Since these sets form a decreasing nest as {; 10,
it follows from (6.8) and the weak* compactness of X oc + p(IJ)B that, for
each a = a,..., 00, their intersection over e E (0, IJA 1 is nonempty. Since this
intersection is exactly Qa(ua, 0), this establishes (6.10) and completes the
proof.

Joint Proof of Theorems 10 and 10'. Let y >°and Voc = s-lim va' By
property n, there exists a triple (A, f1, Ii) satisfying property n(y/2). Therefore,
by Proposition 3, for each /'f E (0, 1) there exists a such that (6.8) holds.
Now pick any IJ E (0, 1/5] and then choose e = IJA. Since the corresponding
value p(lJ) satisfies p(/'f) ~ 2Af1- I ~ y, this establishes (6.3') (and hence also
(6.3». Since the index a = 00 is covered here,

(6.12 )

follows. Now consider any (xll ), (v ll ), (ell) satisfying (6.4'). Observe that
(6.3') holds for all indices fJ >- a. So, for any y >°there exist e >°and P
such that nll(vll , e) c Xoo + yB for all fJ >- Po Pick ii >-IJ so that ell ~ e for all
fJ >- ii. Then, for any fJ >- ii,

x il E nll(vll , ell) c nll(vll , (;) C xa:; + yB.

This establishes (6.5) (for both Theorems 10 and 10'). Now assume foo is
norm lower semicontinuous at X oo ' Since we already have (6.12), for

it will suffice to show Xoo E Q co(v00,0), that is,

fa:;(x co ) - (xC<), voo >~ a + woc(va:;), Va> O.

(6.13 )

(6.14 )
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Let a >O. Using semicontinuity, pick y >0 so that
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VxExoc+yB. (6.15)

By (6.3'), there exists e > 0 such that

(6.16 )

Put e' = min{e, aI2}. Since e' > 0 and woc(v",) > -ex), there exists an
x' E noc(v oo ' e'), that is, an x' satisfying

Since e' ~e, so that noo(v oo ' e')cnoo(voc ' e), it follows from (6.16) that
x' E X oo + yB and then from (6.15) that

Combining the last two inequalities and using e' ~ al2 yields (6.14). Hence,
(6.13) is established. Now observe that (6.3') yields, in particular, that for
each y> 0 there exists e > 0 such that n 00 (v oc ' e) c x oc. + yB. Since
X oo E nw(v oc ' 0) means woc,(v oc ) = loc(xoo ) - (x oc ' voc,),

Thus, for every y > 0 there exists c > 0 such that

This is just norm rotundity of loc' at X oo with respect to v00'

Finally, we tackle the assertions that (6.4) implies (6.6), (6.7), and that
(6.4') implies (6.6'), (6.7'). Analysis of the proof of Theorem 5 reveals that
the strings of inequalities given there would establish that (6.4) implies both
(6.6) and (6.7), provided we could justify inequalities (4.17) and (4.20)
without recourse to Lemma 1(b). Thus, we shall show below that (6.4)
implies

(6.17)

Now consider the assertion that (6.4') implies (6.6') and (6.7'). In outline,
the argument for (6.6') is similar to one of the two strings of inequalities
used for Theorem 5:
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lim wa(va)~ Iimut *(xa) - (xa, va»

~ lim(ea + wa(va»
= lim wa(va)

= lim wa(va)

~ woo(v co )

= wco(v oo )

~/;:;*(xcxJ - (xco ' voo )

~ limUt*(xa) - (Xl!' Va»

~ Iim(ea + wa(va»
= lim wa(v ll ).

(6.18)

(6.19 )

(6.20)

(6.21)

(6.22)

(6.23)

We need to justify the numbered steps. Steps (6.18) and (6.23) follow from
(6.4'). Steps (6.19) and (6.21) folIow from (2.16). Step (6.20) folIows from
Lemma 2. This leaves only step (6.22), which will folIow once we show

(Xco ' vco ) = Iim(xa, va),

I~*(xco) ~ liml:*(xa)·

(6.24)

(6.25)

RecalI that we previously proved (6.4') implies (6.5). Together with V oo =
s-lim va' this yields (6.24). In order to complete the proof of (6.6'), it wilI
therefore suffice to show (6.4') implies (6.25). We defer this for a moment
and consider the argument leading to (6.7'). Consider the folIowing string of
inequalities, also patterned after the proof of Theorem 5:

lim(wa(va) + (xa, va» ~ liml:*(xa)

~ Iim(xa, va) + limUt*(xa) - (xa, va»

~ (xco , voo ) + U;:;*(xco ) - (Xco ' va,» (6.26)

=/;:;* (XcxJ

~ lim It *(xa) (6.27)

~ lim(ea + w,,(v/l) + (x/l' V/l»

= lim(wa(va) + (xa, va»'

Step (6.26) here would folIow from (6.24) and (6.6'), while step (6.27) is
precisely (6.25). It folIows that in order to complete the proof that (6.4')
implies both (6.6') and (6.7'),it suffices to show (6.4') implies (6.25).Recall
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now the only unfinished part of the argument showing (6.4) implies both
(6.6) and (6.7) is the assertion that (6.4) implies (6.17).

We shall now give a joint proof that (6.4) implies (6.17) and that (6.4')
implies (6.25). This will complete the joint proof of Theorems 10 and 10',
There are two cases to consider, described in terms of the quantity

m = inf{A > 0 I 3y > 03,u > 0 3a, (A,,u, a) satisfies n(y)}. (6.28)

Casel: m=O. (Here, we deduce both (6.17) and (6.25).) For any e >0
there exist y > 0 and a corresponding triple (A,,u, a) satisfying property n(y)
and also 2A ~ e. We have k ~fa for all a = el,..., 00 (the inclusion of a = 00

is justified by (6.11». Since k ~ const + C va:,)' it follows that there exists
p~ a such that

VfJ = it.., 00. (6.29)

Now by (6.5), which follows from either (6.4) or (6.4'), pick iJ ~Pso that

VfJ~iJ. (6.30)

Consider any fJ ~iJ. Using (6.29), (6.1), Woo (v a,) =foo(X(IJ - (x oo ' VCIJ) (from
X oo E iloo(voo ' 0» and (6.30), we obtain

ffj(xfj) ~ft *(xfj)

~ k(xfj)

~foo(xa:J + (xfj - x oo ' va:) - A+0

~foo(xCIJ) - e

~f~*(xoc) - e.

By the arbitrariness of e, this establishes both (6.17) and (6.25).

Case II: m >O. (Here, we deduce domfCIJ C {xCIJ}') Consider any x*xa:,'
and suppose foo(:<) < +00. Pick any y satisfying 0 < y <m(b + m)-I
IIx - Xoo II, where <5 = foo(x) - (x, voo) - woo(v oo)~ O. Then

-A +,u Ilx -xooll ~ -A + Ay-l Ilx -xClJII
~m(-1 +y-111,\,-xooID

> -m + b + m,
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k(x) = Woo(V",J + (x, voc) - il + pllx - X OO II

> Woc(V oc) + (x, Voo >+ J

=foc(x).

Since this contradicts foc ~ k (recall (6.11», we must have focVn = +00.
This establishes that dom foc C lxco } in Case II. By the nontriviality
assumption, it follows that Case I must occur. This completes the proof of
Theorems 10 and 10'.

The result dual to Theorems 10 and 10' will use the following definition
for any fixed vectors x", EX, VCO E V such that fx,(xaJ is finite. For any
y > 0, consider the following property:

there exist il > 0, P >°and ii such that I
ilp- I ~ Y and the function h satisfies (
fa ~ h for all a ~ ii (excluding a = (0), )

where h is defined by

n*(y)

if x E x oc> +pB,

otherwise.
(6.31 )

If n*(y) is satisfied for every y > 0, we say that property n* holds (at X oc with
respect to voJ. As will become evident, property n* serves as a uniform local
version (at x rf) with respect to voc,) of the property

epi fa:; C s-lim epi fa

(cf. (1.4».

THEOREM 11. Assume that w-lim epi fa C epi f'Cfj and that the function
f oo is proper. Let X oo and Voo be such that foo(x oo ) is finite and property n*
holds. Then for every y > 0 and X oo = s-lim X a there exist £ >°and asuch
that

Va = 12,... ,00. (6.32)

It follows that oofOCJ(xoo ) c 1voo} and, for every (fJ) c (a) and corresponding
sequences (x/l)' (v/l)' (£/l)' that the conditions

XY) = s-lim X/l (6.33)
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imply

Voo = s-lim vll .

Conditions (6.33) imply also that

Ix (xcxJ = limfll(x13) = lim infU13(x) - (x - x 13 ' v13 )},
x
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(6.34 )

(6.35)

(6.36)

provided oofoo(xocJ = lVoof and fro satisfies the following nontriviality
condition: the largest weakly lower semicontinuous convex minorant of
fro - (', v ro ) is not constantly equal to woo(v(xJ = infx{foo(x) - (x, voc ) f· If
foc is convex, then 0ofw(xxJ = jvw } and Ix is Frechet-dijJerentiable at Xx
with Vfw(xw ) = V w' If foo is convex and weakly lower semicontinuous, if
satisfies the nontriviality condition unless foo(x) = (x, vw) + woo(v oc )'

How stringent is the Frechet-difTerentiability condition forced upon a
proper convex fw by the hypotheses of Theorem II? Combining the
previously cited result of Troyanski [42] with another theorem of Asplund
[1, Theorem 1], we have the following: If X is a reflexive Banach space and
foo is proper convex, then foc is Frechet-difTerentiable on a dense G~ subset
of int(dom foc).

Our proof of Theorem 11 relies on the following result, which is dual to
Proposition 3.

PROPOSITION 4. Assume that w-lim epi f CX) c epifoc and that the function
fw is proper. Let x oc,' V oo ' A> 0, IJ. > °and a be such that foc(xocJ is finite
and the triple (A, IJ., Ii) satisfies property 7C *(y) for }' = AIJ. - '. Then for every
1/ E (0, 1) and X oc = s-lim x a there exists asuch that

Va = a,..., co, (6.37 )

where p(I/) = (1 + 31/)A(l - 1/) - I IJ. -, decreases to AIJ. -, as 1/ 1O. Thus,

In addition,

(6.38 )

Va = a,..., co, (6.39)

provided the functions fI' f2 ,... , fro are proper convex.

Proof. Let 1/ E (0, 1) and X w = s-lim x a • Using Lemma 1(b), we can
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obtain a~ ii such that a ~ a implies foo(xo,J - ~A ~fa(xoJ as well as
xa E X oo + ~pB and Ilxa - xooll . II vooll ~ ~A.. Now consider any a ~ a. Then

fa(xa) ~foo(xoo) - ~A

= (h(xa) - A- (xa - x oo ' voo ») - ~A

~ h(xa ) - (1 + 2~)A.

Suppose v E 8rrA fa(xa), Then for each x E X oo + pB it follows that

hex) ~fa(x)

~fa(xa) - ~A + (x - Xa' v)

~ h(xa) - (1 + 3~)A + (x - x a' v),

which yields v E 8,h(xa ) with' = (1 + 3~)A. But the latter condition holds if
and only if

Since x a + (1 - ~)pB c (x oo + ~pB) + (1 - ~)pB, we can conclude that

and hence Ilv-vooll~'(l-~)-lp-l=p(~). Notice that the limit index
a = 00 is also covered by the preceding argument. Indeed, the only missing
ingredient is the fact that

foo ~ h, (6.40)

which follows from Lemma 1(b) and the hypothesis that fa ~ h for all a
sufficiently large. We have therefore shown (6.37). Since 8ofoo(x oo ) C

8 rrA foo(x oo ) for every ~ E (0,1), with p(~) decreasing to Ap-t as ~ 10, (6.38)
follows from (6.37). Finally, let fl' f2 ,.., foo all be proper convex. Then for
any a = a,... ,oo we have that fa is convex, never -00, and bounded above on
the neighborhood Ua = x", + (1 - ~)pB of x a ' The bound follows from
Ua C XCXJ + pB and the fact that on X oo + pB we have fa(x) ~ hex) ~ A+

foc;(x oo ) +P Ilvooll· It is well known that this information is sufficient to imply
0* 8of",(xa ). This completes the proof.

Proof of Theorem 11. Let y> 0 and Xoc; = s-lim xa . By property n*,
there exists a triple (A, p, ii) satisfying property n*(y/2). Therefore by
Proposition 4, for each ~ E (0, 1) there exists a such that (6.37) holds. Now
pick any ~ E (0, 1/5J and then choose I: = ~A. Since the corresponding p(~)
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satisfies P(l1) ~ 2A..u- 1 ~ y, this establishes (6.32). Since a = 00 is covered
here,

(6.41 )

follows. Now consider any (x/l)' (v/l)' (e/l) satisfying (6.33). Observe that
(6.32) holds for all indices f3 ~ a. So, for any y> 0 there exist e > 0 and (j
such that oef{j(x{j) C Voo + yB for all f3 ~(j. Pick p~p so that e{j ~ e for all
f3 ~ p. Then, for any f3 ~ p,

This establishes (6.34). Now assume foo is convex. Since foo ~ h (see (6.40)),
foo is bounded above by A. +foo(x oo ) +.u II VOO lion X oo + .uB. Since foo is never
-00, this is enough to imply 0"* oofoo(xoo )' In view of (6.41), this yields
oofoo(xoo ) = {v oo }' Now let us show foo is Frechet-differentiable at X oo with
Vfoo(xcrJ = voo ' that is,

(6.42)

Let e > O. By property n*, there exists a triple (A.,.u, a) satisfying property
n*(e). It follows that, for any z E Band r E (O,.u],

o~ r-1(f00(xoo + rz) - f'JJ(x oo )) - (z, vex:> (6.43)

~.u -I (foo(x oo +.uz) - f oo(xoo )) - (z, v(0) (6.44)

~A..u-l (6.45)

~e.

Here, (6.43) follows from Voo E oofoo(xoo )' (6.45) follows from
f oo(xoo + .uz )~ h(xoo +.uz ) (recall (6.40)) and (6.44) follows from the fact
(due to the convexity of foo) that the difference quotients appearing are
nondecreasing in the real parameter. It follows that

r E (O,.u].

This establishes (6.42).
Finally, let conditions (6.33) be satisfied once more. For assertions (6.35),

(6.36) we consider the following string of inequalities:
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lim«xll' Vfj} - !!(Vfj» ~ lim!fj(xfj)

~fx(xcxJ (6.46)

~ limffj(xfj) (6.47)

~ lim(£fj + <xfj' Vfj} - f!(vfj»

= lim«xll' vfj} - f!(vfj»'

Inequality (6.47) follows from Lemma l(b). If we can establish (6.46), it will
follow that

which is just (6.35). Using (6.48) together with (6.34) and v(1J E 0ofoc(xJ:)'
one can obtain the estimate

lim«xfj' vfj} - ffj(xfj» ~ lim(f!(vfj) - £fj)

= lim.!6(v ll )

~ lim(xll • VIl } + lim(ft(v ll ) - <xll ' vll»

~ (x oc ' t'oc> - foc(xocJ

= f~(voc,)'

as well as the analogous estimate with inequalities reversed and limits
superior (and the £fj's suppressed). This would establish (6.36).

The proof of Theorem 11 will therefore be finished once we establish
(6.46). For this, consider the quantity

m* = infjA > 0 I jy > 0 j,u > 0 ja, (A,,u, a) satisfies n*(y)}. (6.49)

Case I: m* = O. (Here, we deduce (6.46).) For any e >0, there exist }' >0
and a corresponding triple (l,,u, a) satisfying property n*(y) and also A~ e.
Now pick IJ~ a so that Ilxll - xooll~,u for all fJ~iJ. It follows that

limfll(xll) ~ lim(fll(xll ) - <xll ' VIl}) + lim(xll , VIl }

~ lim(h(xll ) - <xll ' vll» + (X co , Voo ) (6.50)

= lim(A +foo(x oo ) - <xoc ' Voo }) + (X OC, , va) (6.51)

~ £ +foc(xoc;J.

For (6.50) and (6.5 I), use (6.34) and consider that eventually fi?- iJ ~ a. By
the arbitrariness of £, this establishes (6.46).
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Case II: m* >O. (Here, we deduce that the largest weakly lower semicon
tinuous convex minorant of foo - C voo ) is constantly equal to the value
inflfoo - (" voo )} = woo(v oo )') Consider any y> 0 and corresponding triple
(A.,,u, a') satisfying property n*(y). Since foo ~ h (recall (6.40)), we therefore
have

loo(x) - (x, voo ) ~ ho(x) = A. +foc(x oo ) - (x oc ' voc) + l/Ix x+UB(X)

(where l/Ic equals 0 on C and +00 off C), which implies

and hence

Using A. ~ m* >0, we obtain

l/m*l(foo - (', v",»)* +foo(x oo ) - (X 00 , . + voc)}

~ A. -I,u 11,11- 1~ y-I 11,11- 1.

By property n*, in this estimate y can be taken arbitrarily near zero. It
follows that

VO=/:- v E V,

and hence

VO=/:- v E V.

Since (foo - C voo »)* (0) = -woo(v oo ) E R, where finiteness follows from
Voo E 0ofoo(xoo ) and the properness of foo' we obtain

VvE V.

Taking conjugates yields

VxEX.

Therefore, since the nontriviality condition on 100 rules out precisely this
situation, Case I must occur, and thus (6.46) holds. When f"" is convex and
weakly lower semicontinuous, then (since 100 is also proper by assumption)
one has (f00 - C v00))** =1oc - (" v00)' and so the nontriviality condition
can fail only if loo(x) - (x, voo ) = woo(v oo ) for every x E X. This concludes
the proof.

640/35/4-4
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Refinements of these results hold when X is the dual of some other
normed linear space Vo' On X one systematically substitutes the weak *
topology induced by Vo in place of the weak topology, and one restricts the
parameters v to lie in Voc V. The modified proofs exploit the refinement in
Lemma 2, the remarks following (2.22), and also, for example, the weak *
lower semicontinuity of Ilxll.

7. THE FINITE-DIMENSIONAL CASE

Due to the availability of neighborhoods having finitely many extreme
points, significant refinements of the previous results are possible in finite
dimensional spaces. The refinements are based on the presence of certain
uniformities which, in turn, derive from two finite-dimensional results for
convex functions: Lemma 4 below, and a result of Rockafellar asserting that
pointwise convergence implies uniform convergence on compacta [40,
Theorem 10.8].

Various forerunners of the following result have been observed by several
researchers, including Robert /37, Proposition 4.10] and Salinetti and Wets
[41, Corollary 3B].

LEMMA 4. Assume that X is finite-dimensional and that epi f 00 c

lim epi la' where each function 11'/2 ,...,f00 is convex. Let Xoo E int(dom f (0)'
Then for every A >°there exist f.J. >°and asuch that the function h defined
on X by

if x E Xoo + f.J.B,
otherwise,

satisfies

Va = a,..., co. (7.1)

In particular, there exist M < +00, fJ > 0, ii such that

Vx E Xoo + f.J.B, Va = ii,..., co, (7.2)

and

whenever Xoo = lim xa ' (7.3)

These assertions also hold if fl' 12 ,... are merely quasi-convex and 100 is
merely upper semicontinuous at Xoo '

Proof Clearly, (7.2) and (7.3) will follow from (7.1). Now let A> 0, and
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without loss of generality suppose Xro = O. For (7.1), it suffices to exhibit
f.1 > 0 and ii such that

Vx E f.1B, Va = ii, ... , 00. (7.4 )

Since fro is upper semicontinuous at xry:; (e.g., [40. Theorem 10.1 j), there
exists y > 0 such that

Vx E 2yB. (7.5)

By finite-dimensionality, there is a (full dimensional) standard simplex P
centered at 0 and contained in yB. Suppose its vertices are labeled ~ for
j = 0, 1,... , m. By Lemma 1(a), for each j there exists (x;,) such that

~ = limx;" (7.6 )

Now observe there exists f.1 > 0 sufficiently small that

and also

f.1B c conv{XiI
J

.J +f.1B c 2yB,

whenever

Vj,

Xi E.J +f.1B, Vj.

(7.7)

(7.8)

(Indeed, one can suppose B corresponds to the Euclidean norm and then
take any f.1 E (0, Pl, where P is half the distance between the origin and the
(m - I)-dimensional faces of P.) By (7.6), for eachj there exists a j such that

and

Put ii=max{ajlj=O,I,... ,ml, and consider any a~ii. We have
x;, E ~ + f.1B for every j (by (7.9)), hence f.1B c convj{x;, I (by (7.8)). Then
for any x E f.1B we obtain

(quasi-convexity of fc.),

(by (7.9)),

(by (7.7), (7.5)).

This completes the proof.
We present two theorems summanzmg the main finite-dimensional

refinements of the earlier results for P,(v,), Piv 2),... , P ro (v ocJ The first deals
with the nonconvex case.
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THEOREM 12. Assume that X is finite-dimensional and that fa --> In'
where f 00 is proper. Let v00 be such that there exists a proper convex lower
semicontinuous function k on X such that k ~foo and jx E X I k(x)
(x, voo >~~} is nonempty and bounded for some ~ E R. Assume also that
there exist r < +00 and a such that

whenever Ilxll > r, Va~a. (7.10)

Then there exists /1 > 0 such that each of the following properties holds for

C = Iv E Vlliv - Vee II < /1}.

(a) Whenever Va --> Voo E C and 0 < ea --> 0, one has

o *" lim na(va , ea ) c noo(v oo ' 0),

lim (Va (va) = (V 00 (v oc) E R.

(b) More generally, whenever (xa), (va)' VOO ' (ea) satisfy

(7.11 )

(7.12 )

(7.13 )

one has

lim(fa(xa) - (xl'" va» = lim (Va(va ) = (Voo(v oo ) E R

and the existence of (fJ) c (a) and X oo such that

(7.14)

(7.15 )

(C) The functions (Va converge pointwise to (voo everywhere on C, and
this convergence is uniform on Iv E Vlliv - vooll ~fif for every fiE (0,/1).

(d) Whenever va --> Voo E C, 0 ~ ea --> 0 and Za --> Zoc.' the approximate
directional derivative functions (V~(v; z) (defined in (5.14» satisfy

(7.16)

(e) Whenever Va --> Voo E C, 0 ~ ea --> 0 and y> 0, there exists a such
that

na(va , ea) C noo(v ee , 0) + yB,

Qa(va , ea) C Qee(voo ' 0) + yB,

Va~a,

Va~a.

(7.17)

(7.18 )

(The sets Q(v, e) are defined in (2.13)-(2.15).)

Proof Parts (a), (b) and (d) will follow basically from Lemma 3,
Lemma 4 and Theorem 8 and its Corollary. Then, parts (c) and (e) will
follow from (a) and (d), with the aid of [40, Theorem 10.8]. We begin by



SEQUENCES OF OPTIMIZATION PROBLEMS 349

observing that fa-+foo and (7.10) imply epif~climepif:, by Lemma 3
together with (2.2) and Lemma lea). (Note: Lemma lea) and fa -+foo imply
that (7.10) applies also to a = 00.) Since the functions f: are convex,
Lemma 4 will apply to 600 provided we can show 600 E int(domf~). For
this, observe that k ~foo implies f~ ~ k*, hence int(dom k*) c int(domf:::J
Furthermore, the assumed nonemptiness and boundedness of some lower
level set of k - (-, voo>is equivalent to Voo E int(dom k*). (See, for example,
[40, Theorem 27.1(d)(f)], or the Moreau and Rockafellar results used in the
proof of Theorem 8.) Therefore Lemma 4 implies there exist M < +00, Ii> 0,
ii such that

It follows that

f:(v) ~M, Vv E Voo + liB, Va = ii, ... , 00. (7.19)

Voo + liB c domf:,

h* ~f:* ~fa'

Va = ii, ... , 00.

Va = ii, ... , 00,

(7.20)

(7.21)

where h is the function defined on V by

h(v) = 1
M

1+00
if v E v(fj + liB,
otherwise.

By (7.21), Theorem 8 applies, yielding parts (a) and (b). and the Corollary
to Theorem 8 applies also, yielding part (d). For (c), observe that from
foo =k +00 and Lemma lea) we have W a (') < +00 for all a sufficiently large.
Then by (7.20) and (7.12) it follows that the w a ' for all a sufficiently large,
are finite everywhere on C and converge pointwise to Woo there. Therefore.
(c) follows from [40, Theorem 10.8]. Finally, consider part (e). Clearly, it
suffices to show (7.17) just in the case of 0 < ca -+ O. Suppose it fails. Then
there exist Va -+ V eN E C, 0 < ca -+ 0, y> 0 for which

occurs on some subsequence (fJ) c (a). For each fJ E (fJ) pick x{3 such that

but

By (7.10), we can assume that x{3 -+ X oo for some x oo ' Then (7.11) implies
X oo E [}oo(v oo ' 0). We have reached the absurdity

0< y < Ilx{3 -X", 11-+ O.
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Thus, (7.17) holds. For (7.18), let va --+ Voo E C, 0 ~ ea --+ 0 be given. By (d),

VzE V. (7.22)

Furthermore, the functions (wa); (va;') for all a sufficiently large and for
a = 00 are finite. Indeed (setting eoo = 0 to cover a = 00 simultaneously),
(5.16) yields

(7.23)

Now pick a~ ii (where ii is as in (7.20» so that va E C and also
wa (,) < +00 for all a ~ a. Then for any a = a,.... 00 it follows from (7.20)
that va E int(domf:), and hence from [40, Theorem 27. I(d)(f) I and (2.15)
that iia(va , ea ) is nonempty and bounded. By (7.23), this shows
(W a ): (Va;') is everywhere finite for all a = a,..., 00. Now let y > 0 be given.
By ('7.22) and [40, Corollary 10.8.11 there exists a~ a such that, for any
a~a,

By positive homogeneity (see (7.23» this implies

(Woo)~ (v oo ; z) - y Ilzll ~ (Wa);" (Va; z),

and by (7.23) this yields

VzEB.

VzE V,

(where lfIs denotes the function having value 0 on Sand +00 ofT S). Taking
conjugates yields

that is,

Since the sets fla(v a , ea) are closed (as well as convex) and yB is compact,
the closure operations here are redundant (e.g., [40, Corollary 9.1.2 and
Theorem 8.4 D. This establishes (7.18) and completes the proof.

Now consider the convex case.

THEOREM 13. Assume that X is finite-dimensional and that fa --+ f 00'

where each function f. '/2 ,..., fro is proper convex and lower semicontinuous.
Let ifoo be such that {x E X Ifoo(x) - (x, ifoo ) ~ e} is nonempty and bounded
for some eE R. Then there exists f.J > 0 such that each of the following
properties holds for C = {v E V III v - ifooll < f.J}.
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(a) Whenever va --+ Voo E C and 0 ~ ea --+ 0, one has

0* lim fla(v a , ea) c floo(v oo ' 0),

lim wa(va) = woo(v oo ) E R.

(b) More generally, whenever (xa), (va)' voo ' (e a) satisfy
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(7.24 )

(7.25)

va -+ V oo E C, (7.26 )

one has

and the existence of (fJ) c (a) and X oo such that

x13 --+ Xoo E floo(v oc ' 0).

(7.27)

(7.28)

(c) The functions W a converge pointwise to Woo everywhere on C, and
this convergence is uniform on {v E V III v - v00 II ~ ,il} for every ,il E (0, Ii).

(d) Whenever va --+ Voo E C, 0 ~ ea --+ 0 and Za --+ ZOO' the approximate
directional derivative functions w~(v; z) (defined in (5.14)) satisfy

(7.29)

(e) Whenever va --+ Voo E C, 0 ~ ea --+ 0 and y> 0, there exists asuch
that

Va~a. (7.30)

Proof This is much the same as the proof of Theorem 12, so we only
remark on a few points. The role of (7.10) and Lemma 3 is played here by
convexity and Theorem 1. The refinement in part (a) from 0 < ea --+ 0 to
o~ ea -+ 0 follows from convexity of the fa'S. (See the end of the proof of
Theorem 8 and also the proof of (6.10) in Proposition 3.) Lacking (7.10)
here, the proof of (7.30) follows that of (7.18) rather than (7.17).

Some of the results in Theorem 13 can reportedly be derived using the
recent results of Attouch and Wets [71, to which we have not had access.

We conclude by giving results which can be regarded as dual to those of
Theorem 13.

THEOREM 14. Assume that X is finite-dimensional and that fa -+ f w'

where fa is proper convex for all a = ii,..., 00. Let Xoo E int(domfw)' Then
there exists Ii > 0 such that each of the following properties holds for
c= lxEXlllx-xooll <Ii}.
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(a) Whenever Xa --+ Xoo E C and 0< ea --+ 0, one has

0,* lim 0eJa(xa) c 00 foo (xoo )'

limfa(xa) =foo(xCfJ E R.

(b) More generally, whenever (xa ), XCf.." (va)' (e a) satisfy

(7.31 )

(7.32)

(7.33 )

one has

(7.34 )

and the existence of (ft) c (a) and VCf..' such that

v/3 --+ Voo E oofoo(xocJ, (7.35)

lim«x/3' v/3) - f/3(x/3» - f/3(x/3» = limft(v/3) =f~(vCf..')E R. (7.36)

(c) The functions fa converge pointwise to f 00 everywhere on C, and
this convergence is uniform on {x E X III x - XOC II <.ill for every .il E (0, J1).

(d) Whenever X a --+ X oc E C, 0< ea --+ °and Za --+ Zoc' the approximate
directional derivative functions f~(x; z) (defined in (5.26» satisfy

(7.37)

(e) Whenever X a --+ X oc E C, 0< ea --+ °and y> 0, there exists a such
that

Va~a. (7.38)

Proof Like that of Theorems 12 and 13. Theorem 9 and its Corollary
play the role of Theorem 8 and its Corollary. Note that for part (e) one
needs the fact that, for some ii, the sets oe fa(xa) are nonempty and bounded
for all a = a., ..., co. For boundedness, seeQ (5.25); for nonemptiness, observe
that 0'* oofa(xa ) c oeJa(xa) follows from fa being proper convex and
bounded above around X a (by (7.2».

REFERENCES

I. E. ASPLUND, Frechet ditTerentiability of convex functions, Acta Math. 121 (1968),31--47.
2. E. ASPLUND AND R. T. ROCKAFELLAR, Gradients of convex functions, Trans. Amer.

Math. Soc. 139 (1969), 443--467.
3. H. ArroucH, "E.P.D. associees ades families de sousditTerentiels," These, Paris. 1976.



SEQUENCES OF OPTIMIZATION PROBLEMS 353

4. H. ArroucH, Convergence de fonctionelles convexes, in "Journees d'analyse non lineaire"
(P. Benilan and J. Robert, Eds.), pp. 1-40, Springer-Verlag, Berlin/New York, 1978.

5. H. ArroucH, Families d'operateurs maximaux monotones et measurabilite, Ann. Mat.
Pura Appl. (4) 120 (1979), 35-111.

6. H. ArroucH AND C. SBORDONE, Asymptotic limits for perturbed functionals of calculus
of variations, Ricerche Mat. 29 (1980), 85-124.

7. H. ATIOUCH AND R. J.-8. WETS, Approximation and convergence in nonlinear
optimization, in "Nonlinear Programming 4" (0. L. Mangasarian, R. R. Meyer, and S.
M. Robinson, Eds.), Academic Press, New York, 1981.

8. R. C. BERGSTROM AND L. McLINDEN, Convergent sequences of dual convex programs. in

preparation.
9. L. BOCCARDO AND P. MARCELLlNI, Sulla convergenza delle soluzioni di disequazioni

variazionali, Ann. Mat. Pura Appl. (4) 110 (1976), 137-159.
10. H. BREZIS. "Operateurs maximaux monotones et semi-groupes de contractions dans les

espaces de Hilbert," Lecture Notes No.5, North-Holland, Amsterdam. 1973.
II. A. BR0NDSTED, Conjugate convex functions in topological vector spaces, Mat.-Fys.

Medd. Danska Vid. Selsk. 34 (1964), No.2.
12. A. BR0NDSTED AND R. T. ROCKAFELLAR, On the subdifferentiability of convex functions.

Proc. Amer. Math. Soc. 16 (1965), 605-611.
13. L. CARBONE AND F. COLOMBINI. On convergence of functionals with unilateral

constraints, J. Math. Pures Appl. 59 (1980), 465-500.
14. M. M. DAY, "Normed Linear Spaces," 3rd ed., Springer-Verlag, New York/Berlin. 1973.
15. E. DE GIORGI, Convergence problems for functionals and operators. in "Recent Methods

in Non-Linear Analysis" (E. De Giorgi, E. Magenes, and U. Mosco. Eds.l, pp. 131-188.
Pitagora Editrice, Bologna, 1979.

16. E. DE GIORGI AND T. FRANZONI. Su un tipo di convergenza variazionale. Alii Accad.
Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. 58 (1975), 842-850.

17. Z. DENKOWSKI, The convergence of generalized sequences of sets and functions in locally
convex spaces, 1 and II. Zesgyty Nauk. Unili'. Jagiello. Prace Mat. 22 (1981). 37-58 and
59-72.

18. Z. DENKOWSKI, On the (Q)-convergence of nets of regular convex functions. Zesgyty
Nauk. Unili'. Jagiello. Prace Mat. 22 (1981). 73-83.

19. P. DOKTOR, Perturbations of variational inequalities and rate of convergence of solutions.
Czechoslovak Math. J. 30 (105) (1980),426-437.

20. S. DOLECKI, G. SAUNETII, AND R. J.-B. WETS, in preparation.
21. I. EKE LAND AND G. LEBOURG. Generic Frechet-differentiability and perturbed

optimization problems in Banach spaces. Trans. Amer. Math. Soc. 224 (1976). 193-216.
22. I. EKELAND AND R. TEMAM. "Analyse convexe et problemes variationnels:' Dunod.

Paris, 1972.
23. W. FENCHEL, On conjugate convex functions, Canad. J. Math. I (1949). 73-77.
24. 1. L. loLY, "Une famille de topologies et de convergences sur I'ensemble des fonction

nelles convexes:' These, Universite de Grenoble, 1970.
25. 1. L. loLY, Une famille de topologies sur ['ensemble des fonctions convexes pour

lesquelles la polarite est bicontinue. J. Math. Pures Appl. 52 (1973), 421-441.
26. P. KosMoL. Optimierung konvexer Funktionen mit Stabilitatsbetrachtungen, Disser

tationes Math. (Rozpra ...'Y Mat.) 140 (1976), 5-38.
27. P. KOSMOL, On stability of convex operators, in "Optimization and Operations Research"

(R. Henn. 8. Korte. and W. Oettli, Eds.). pp. 173-179, Springer-Verlag. Berlin/New
York, 1978.

28. P.-l. LAURENT, "Approximation et optimisation," Hermann, Paris, 1972.
29. P. MARCELLlNI, Su una convergenza di funzioni convesse, Boll. Un. Mat. Ital. (4) 8

(1973), 137-158.



354 L. MCLINDEN

30. M. MATZEU, Su un tipo di continuita dell'operatore subdifferenziale, Bo/l. Un. Mat. Ital.
B (5) 14 (1977), 480-490.

31. L. McLINDEN AND R. C. BERGSTROM. Preservation of convergence of convex sets and
functions in finite dimensions, Trans. Amer. Math. Soc. 268 (1981), 127-142.

32. J. J. MOREAU, Sur la fonction polaire d'une fonction semi-continue superieurement, C. R.
Acad. Sci. Paris 258 (1964), 1128-1131.

33. J. J. MOREAU, Fonctionelles convexes, Lecture Notes, Seminaire "Equations aux derivees
partielies," College de France, Paris, 1966.

34. G. MOSCARIELLO, F-convergenza negli spazi sequenziali, Rend. Accad. Sci. Fis. Mat.
Napoli (4) 43 (1976), 333-350.

35. U. Mosco, Convergence of convex sets and of solutions of variational inequalies, Advan.
Math. 3 (1969), 510-585.

36. U. Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35
(1971),518-535.

37. R. ROBERT, Convergence de fonctionnelles convexes, J. Math. Anal. Appl. 45 (1974),
533-555.

38. R. T. ROCKAFELLAR, Level sets and continuity of conjugate convex functions, Trans.
Amer. Math. Soc. 123 (1966), 46-63.

39. R. T. ROCKAFELLAR, Characterization of the subdifferentials of convex functions, Pacific
J. Math. 17 (1966),497-510.

40. R. T. ROCKAFELLAR, "Convex Analysis," Princeton Mathematical Series, No. 28, Prin
ceton Univ. Press, Princeton, N.J., 1970.

41. G. SALINETII AND R. 1.-B. WETS, On the relations between two types of convergence for
convex functions, J. Math. Anal. Appl. 60 (1977), 211-226.

42. S. L. TROYANSKI, On locally uniformly convex and differentiable norms in certain non
separable Banach spaces, Studia Math. 37 (1971),173-180.

43. D. W. WALKUP AND R. J.-B. WETS, Continuity of some convex-cone-valued mappings.
Proc. Amer. Math. Soc. 18 (1967), 229-235.

44. R. J.-B. WETS, Convergence of convex functions, variational inequalities, and convex
optimization problems, in "Variational Inequalities and Complementarity Problems" (R.
W. Cottle, F. Giannessi, and J.-L. Lions, Eds.), pp. 375-403, Wiley, Chichester, 1980.

45. R. A. WUSMAN. Convergence of sequences of convex sets, cones and functions, Bull.
Amer. Math. Soc. 70 (1964), 186-188.

46. R. A. WUSMAN. Convergence of sequences of convex sets, cones and functions. II. Trans.
Amer. Math. Soc. 123 (1966), 32-45.

47. K. YOSIDA, "Functional Analysis," 4th rev. ed., Springer-Verlag, New York/Berlin. 1974.
48. T. ZOLEZZI, On convergence of minima, Bo/l. Un. Mat. Ital. (4) 8 (1973). 246-257.
49. T. ZOLEZZI. "Approssimazioni e Perturbazioni di Problemi di Minimo." book in

preparation.


